Ambiguous Joint Chance Constraints Under Mean and Dispersion Information

نویسندگان

  • Grani Adiwena Hanasusanto
  • Vladimir Roitch
  • Daniel Kuhn
  • Wolfram Wiesemann
چکیده

We study joint chance constraints where the distribution of the uncertain parameters is onlyknown to belong to an ambiguity set characterized by the mean and support of the uncertaintiesand by an upper bound on their dispersion. This setting gives rise to pessimistic (optimistic)ambiguous chance constraints, which require the corresponding classical chance constraints to besatisfied for every (for at least one) distribution in the ambiguity set. We demonstrate that thepessimistic joint chance constraints are conic representable and thus computationally tractableif (i) the constraint coefficients of the decisions are deterministic, (ii) the support set of theuncertain parameters is a cone, and (iii) their dispersion function is positively homogeneous.We also show that tractability is lost as soon as either of the conditions (i), (ii) or (iii) is relaxedin the mildest possible way. We further prove that the optimistic joint chance constraints aretractable if and only if (i) holds. To showcase the power of our tractability results, we solvelarge-scale project management and image reconstruction models to global optimality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust optimization with ambiguous stochastic constraints under mean and dispersion information

In this paper we consider ambiguous stochastic constraints under partial information consisting of means and dispersion measures of the underlying random parameters. Whereas the past literature used the variance as the dispersion measure, here we use the mean absolute deviation from the mean (MAD). This makes it possible to use the 1972 result of Ben-Tal and Hochman (BH) in which tight upper an...

متن کامل

Exact robust counterparts of ambiguous stochastic constraints under mean and dispersion information

In this paper we consider ambiguous stochastic constraints under partial information consisting of means and dispersion measures of the underlying random parameters. Whereas the past literature used the variance as the dispersion measure, here we use the mean absolute deviation from the mean (MAD). This makes it possible to use the old result of Ben-Tal and Hochman (1972) in which tight upper a...

متن کامل

A chance-constrained multi-objective model for final assembly scheduling in ATO systems with uncertain sub-assembly availability

A chance-constraint multi-objective model under uncertainty in the availability of subassemblies is proposed for scheduling in ATO systems. The on-time delivery of customer orders as well as reducing the company's cost is crucial; therefore, a three-objective model is proposed including the minimization of1) overtime, idletime, change-over, and setup costs, 2) total dispersion of items’ deliver...

متن کامل

Incorporating Return on Inventory Investment into Joint Lot-Sizing and Price Discriminating Decisions: A Fuzzy Chance Constraint Programming Model

Coordination of market decisions with other aspects of operations management such as production and inventory decisions has long been a meticulous research issue in supply chain management. Generally, changes to the original lot-sizing policy stimulated by market prices may impose remarkable deviation revenue throughout the supply and demand chain system. This paper examines how to set the chan...

متن کامل

Ambiguous Risk Constraints with Moment and Unimodality Information

Optimization problems face random constraint violations when uncertainty arises in constraint parameters. Effective ways of controlling such violations include risk constraints, e.g., chance constraints and conditional Value-at-Risk (CVaR) constraints. This paper studies these two types of risk constraints when the probability distribution of the uncertain parameters is ambiguous. In particular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Operations Research

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2017